Indian Statistical Institute B. Math. Hons. III Year Semestral Examination 2002-2003 Optimization

Date:25-04-2003 Max. Marks: 120 Instructor: S. Ramasubramanian

Note: The paper carries 130 marks. Any score above 120 will be treated as 120.

Consider the linear programming problem: Minimize (-3x₁-2x₂) subject to x₁ + x₂ ≤ 4, 2x₁ + x₂ ≤ 6, x₁ ≥ 0, x₂ ≥ 0.
 (i) Use the simplex algorithm to solve the problem.

(ii) Can you solve the problem without using the simplex method? Justify your answer. [17+8=25]

- 2. Let P denote a linear programming problem in standard form.
 (i) Show by an example that both P and its dual can be infeasible.
 (ii) If P is unbounded below show that its dual is infeasible.
 (iii) Is it possible for P to have exactly k ≥ 2 extreme points and be unbounded below? [9+7+9=25]
- 3. Let Δ denote the standard (n-1) dimensional simplex in \mathbb{R}^n ; let $a \in \Delta$ be an interior point and T_a be the corresponding projective transformation encountered in Karmarkar's algorithm.

(i) Show that T_a maps Δ onto Δ in a one-one fashion.

(ii) Show that $T_a(x)$ is a boundary point of $\Delta \Leftrightarrow x$ is a boundary point of Δ . [15+10=25]

- 4. Consider the problem: Find an $x \in \mathbb{R}^n$ such that $Ax = b, x \ge 0$ if one exists; if not, report so. Suppose entries of A, b are integers. Indicate how this problem can be converted to Karmarkar standard form. [20]
- 5. Consider the problem: Maximize (x₁ + x₂ + ... + x_n) subject to the single constraint (x₁² + x₂² + ... + x_n²) = 1.
 (i) Justify the use of Lagrangean method for solving this problem.
 - (ii) Solve the problem using Lagrangean method. [15+10=25]
- Show by an example that the Kuhn-Tucker conditions are not sufficient to characterize a local maximum in an inequality-constrained problem.
 [10]